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The correlation spectrum of fully developed one-dimensional mappings is 
studied near and at a weakly intermittent situation. Using a suitable infinite- 
matrix representation, the eigenvalue equation of the Frobenius-Perron 
operator is approximately reduced to the radial SchrSdinger equation of the 
hydrogen atom. Corrections are calculated by quantum mechanical perturba- 
tion theory. Analytical expressions for the spectral properties and correlation 
functions are derived and checked numerically. Compared to our previous 
work, the accuracy of the present results is significantly higher owing to the 
controlled and systematic approximation scheme. 
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1. I N T R O D U C T I O N  

Typical intermit tent  behavior  involves an irregular switching between 
regular and chaotic motion.  As a result, correlat ion decay in intermit tent  
systems is intermediate between that  of regular and "purely" chaotic 
systems: it follows typically a power  law. tt) Hereafter  we consider intermit- 
tency in case of one-dimensional  noninvert ible mappings.  Correla t ion 
functions may  then be expressed in terms of the spectral propert ies of the 
F roben ius -Pe r ron  o p e r a t o r / ~ ,  defined by 

~ o ( f / ' ( x ) )  
( /~0)(x)  = f dy ( ~ ( x - f ( y ) ) q ) ( Y ) = E  I~-r(-~ i~~)-)l (1) 
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Here cp(x) is an arbitrary function, f(x) stands for the mapping function 
and a labels the inverse branches. The power law decay is associated with 
an accumulation point at the upper edge of the spectrum that causes 
serious difficulties at direct numerical studies of the spectral properties. 
Moreover, we have found that the corresponding eigenvectors tend to 
become approximately parallel, that greatly reduces the number of 
eigenstates which can be extracted from a finite size matrix representa- 
tion. 12) Therefore, a suitable analytical treatment is needed which does not 
involve any truncations. Such a method has already been applied in refs. 2 
and 3. Here we present another approach which is based on a suitable 
infinite matrix representation. This method has the advantage that it 
approximately reduces the problem to the well known radial Schr6dinger 
equation for s-states. Mathematically significant is the fact that the original 
problem is transformed into an equivalent one which admits a nearly her- 
mitian representation. Therefore, beyond the interesting analogy, our 
method renders possible the application of standard perturbation theory as 
a tool for a systematic calculation of corrections. This results in a rather 
high accuracy for the spectral properties, as we shall demonstrate. 

We develop our method for the treatment of the family of piecewise 
parabolic m a p s  14) 

Xr_. 1 
~r ( l + r - x / ( i - r ) 2 + 4 r l l - 2 x l )  r~[O, 13 (2) 

Note that the parameter value r = 1 corresponds to a weakly intermittent 
situation, t5-9' ~ It turns out that the main features of the spectrum and the 
eigenfunctions depend only on the behavior of the map near the unstable 
fixed point 0 when r is close to 1, thus our results have a broader relevance, 
in fact, they bear in a sense a universal character, t3) 

The paper is organized as follows. In Section 2 the intermittent situa- 
tion ( r=  1) is discussed, especially, contact is made with the quantum 
mechanical s-scattering on a Coulomb potential at zero energy. In Sec- 
tion 3 the nearly intermittent (r ~ 1) situation is considered. The problem 
is reduced approximately to the bound s-states in a Coulomb potential. 
Correction terms are calculated by standard quantum mechanical pertur- 
bation theory. Approaching intermittency, the number of the eigenstates 
essentially involved in the representation of a correlation function tends to 
the infinity, therefore the calculation of correlation functions is highly non- 
trivial, even if the spectral properties are already known. 13~ In Section 4 we 
present and discuss an analytic expression for correlation functions, that is 
relevant near intermittency. The detailed derivation can be found in 
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Appendix B. A discussion of the results is given in the concluding Section 5. 
Appendix A contains an outline and discussion of the numerical method 
for calculating corrections in the intermittent situation. 

2. THE INTERMITTENT SITUATION 

One conclusion of our numerical study done on the family of maps (2) 
has been that finite size matrix approximations are poor near and at the 
intermittent situation, hence if one wants to get the spectral properties in 
those cases reliably, some ~ other method is needed which does not involve 
any truncations of the matrix representations. As a first step we have 
chosen for an analytical study the intermittent map 

x ' =  1 - ~/11 - 2xl (3) 

corresponding to r = l  in Eq. (2). Using the basis ( l - - x )  4n+l (where 
n=0,1 ,  2,...), one obtains for the (j,k)-th matrix element of the 
Frobenitis-Perron-operator (1) the simple closed expression 

= (4k + 1 ) 2--4k 
Hj, k \ 2j (4) 

These matrix elements are displayed in Fig. 1. Our aim is to find an 
asymptotical solution to the eigenvalue equation, i.e., an expression of the 
eigenvector for large j-values, as the failure of the numerical calculation 
implies that this numerically inaccessible part of the eigenvector plays an 
inevitable role. The matrix representation (4) also supports this expectation 
as the largest matrix elements lie at the diagonal and decay with j as j -  ~/2, 
while the strip of the non-negligible matrix elements along the diagonal has 
a width of ~x/~ .  Thus any truncation leads to a dramatic effect. Using 
Stirling's formula for the factorials arising in Eq. (4) for large j and 
I k - j l  ~ x /~  the Hj.k matrix element is approximately given by 

~ ( 2m2~( ( 3m m_~) 2 1+ -- +2  
Hi.k= exp -- J / i 7  

( 5 1  27 m 2 16 m 4 m_~)) 
+ -i j (s) 

(where m = k - j ) ,  this expression being accurate up to the order 1/j. The 
quality of the approximation is demonstrated in Fig. 2, where the difference 
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Fig. 1. The exact matrix elements Hj. k in the intermittent case. 
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Fig. 2. The difference between the analytical approximation (5) and the exact values for the 
matrix elements Hj.k in the intermittent case along the diagonal. 
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between the asymptotical expression (5) and the exact values (4) is shown. 
Retaining only the Gaussian, we find the approximate eigenvectors 

at, t) = sin(C x/~) (6) 

and 

a~2) = cos(C x/~) (7) 

both belonging to the eigenvalue 

( c2) 
2 = e x p  - - ~ -  (8) 

This can be proven by inserting the above asymptotic expressions into the 
eigenvalue equation, replacing the summation over k with integration and 
evaluating it by using the saddle point method. The reason why we get this 
twofold degeneracy can be understood as a result of the asymptotical 
method ~which formally allows j and k to take on negative values as well, 
thus the situation is analogous with the continuous spectrum of a quantum 
particle performing unbounded one-dimensional motion. Actually these 
solutions get corrections near the origin (i.e., at k = 0 ) ,  where the 
asymptotic expansion of Hi., does not hold, and, on the other hand they 
combine in a particular way to cancel each other for k < 0. As a result, the 
spectrum will not be degenerated, but is continuous. Using a quantum 
mechanical analogy again, the situation resembles to a one dimensional 
scattering process of a particle on a potential containing a hard core. It is 
interesting to note, that the asymptotic regime corresponds to the laminar 
motion in the original x-representation, as for large k the basis functions 
( 1 - x )  4k§ are sharply peaked at the origin (which is now a marginally 
unstable fixed point) and nearly vanish elsewhere. The nonasymptotic 
regime, on the other hand, corresponds to the chaotic motion. Hence in 
this representations we are given a picture about intermittency that relates 
it to a scattering process, where the motion near the scattering potential 
corresponds to chaos. As we shall see later, in the nonintermittent situation 
one has to do with bound states in such a potential. This is in accordance 
with the fact that we have a discrete spectrum in that case. 

Nevertheless, the above asymptotic solutions are not very precise 
numerically. To improve this approximation, one may seek for corrections 
proportional to 1/x/~ and to 1/k. In order to get them, one has to take into 
account corrections to the saddle point method, which means that one uses 
Eq. (5) and retains terms like those proportional to m 2 which give a con- 
tribution when averaging them with the Gaussian. It turns out, however, 

822/89/3-4-9 
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that these corrections are proportional to 1/C and 1/C 2, respectively, for 
C ~ 1, i.e., the correction terms diverge as the eigenvalue approaches 1 
(which is the most interesting situation for us). On the other hand, the 
"improved" solution shows a remarkable feature, namely, that for small C 
it depends on C and on k only through the combination CZk: 

a(i) =h(C2k) (9) 
k 

If one demands this dependence from the beginning and assumes that 
C ~  1, k>> 1 while no assumption is made about C2k, then one gets up 
to order 1/j in j and tO order C 2 in C (defined now through Eq. (8)) the 
equation 

1 
h"(z) +-~z h(Z) = O (10) 

(z standing for Czj) whose two linearly independent solutions are 
(of. ref. 1 O) 

h("(z) = x/~ J,(x/~) (11) 

and 

h(:'(z) =,/q (12) 

Jt and Yt standing for the first order Bessel and Neumann functions, 
respectively. Eq. (10) is identical with the radial Schr6dinger equation for 
s-wave scattering in a Coulomb potential at zero energy. As discussed 
above, it is valid far from the "chaotic core" of the effective scattering 
potential which for small values of k gives rise to corrections. We shall see, 
however, that the range of validity of Eq. (10) extends down to k = 1 when 
C ~ 0. The boundary conditions follow from the restrictions that the eigen- 
functions in the original "x-space" should have an integrable singularity at 
x = 0 and their integral over the whole [ 0, 1 ] interval should vanish. This 
latter follows from the orthogonality of the left and right eigenfunctions 
(belonging to different eigenvalues) and from the fact that the identically 1 
function is the left eigenfunction of the Frobenius-Perron operator for 
C =  0 (i.e., for 2 = 1). Note that it is valid 0nly in the case of permanent 
chaos and does not apply for transient chaos. The eigenfunction of the 
Frobenius-Perron operator is given by 

o o  

r = ~ gj(1 - x) 4j+l (13) 
j=O 
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where the asymptotical form of gj is given by some linear combination of 
h ~ and h t2) (see Eqs. (11), (12)). As the asymptotical form of both the 
Bessel and the Neumann function is a phase-shifted sinus with a one-over- 
square-root type amplitude, for fixed C and increasing j the moduli of the 
coefficients gj grow like j 1/4. This growing is, however, superimposed by the 
exponential decay of the ( 1 - x )  4j+~ factor, making the infinite sum in 
Eq. (13) absolutely convergent for 0 < x ~< 1. One can even show that the 
eigenfunction ~c(X) is integrable near zero (one estimates the summation 
with an integral, after a term-by-term integration over x). This is true 
essentially because Z~_-o gJ(4j + 2) is finite. One can express the require- 
ment of the integrability of the eigenfunction near zero as a boundary con- 
dition to Eq. (10) stating that ~ h(z)/z is finite (the lower limit of the 
integration range being an arbitrary positive value). Thus we can say that 
both propagating solutions (11) and (12) of Eq. (10) are allowed by the 
boundary condition at the infinity, as is usually the case in the customary 
scattering problems. 

The next issue is how one can determine the actual eigenvector gj 
for a given (small) C knowing the asymptotical solutions h(i)(C2j). The 
asymptotical solutions are actually rather accurate approximations even for 
small j-s when C is small. Nevertheless, at or near j = 0 they do not satisfy 
the eigenvalue equation, thus giving rise to a correction term. If one starts 
with the proper linear combination of the two asymptotic solutions, then 
the correction term rapidly decays. This is the condition which selects the 
proper asymptotics. (If, however, not the proper linear combination has 
been chosen, then the correction term itself contains an asymptotic part, 
describing a "reflection" at the origin j = 0 . )  The numerical procedure is 
outlined and discussed in Appendix A. According to those considerations, 
for small C, i.e., for an eigenvalue near unity the eigenfunction has the form 

oo 

~c(X) -- 2(1 -- X) -- 2 2 C %//7 J l (  C ~ 7 ) ( 1  - x )  4 j + '  (14) 
j=O 

(Here we have multiplied by - 2  in order to exhibit the similarity to the 
C = 0 case when just the first term of the r.h.s, of Eq. (14) remains.) The 
sum may be evaluated by replacing it with an integral. Neglecting terms 
proportional to C 2 times a nonsingular function (which come from the 
derivatives of the summand at j = 0 when the Euler-Maclaurin Summation 
Formula is applied) one obtains (cf. ref. 11) 

/ i2 dpc(X)=2(1-x ) -  C 2 ( 1 - x )  e x p -  (15) ( 1 ) 1 
161n2 i x 161n 1 x 
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For C ~ 0 the second term vanishes everywhere except near x = 0, where 
it has a sharp peak with unit area. As the first term is nothing but the nor- 
malized stationary probability density of the map (which is at the same 
time the eigenfunction of the Frobenius-Perron operator with unit eigen- 
value (i.e., C = 0), one can see in which sense the limiting eigenfunction is 
approached and also, that the integral of the eigenfunction over x vanishes. 

One can see now that the spectral properties around the upper edge 
of the spectrum depend predominantly on the laminar motion of the map 
near its marginally unstable fixed point, as the influence of the other parts 
of the map can show .up itself through correction terms, which, however, 
become negligible when the eigenvalue approaches unity. On the other 
hand, corrections for larger values of C can be calculated with relatively 
little numerical efforts as the nondeeaying asymptotical part of the eigen- 
vectors (which has been previously the root of the numerical difficulties) is 
already taken into account analytically. 

3. THE ASYMPTOTICAL SOLUTION OF THE FROBENIUS- 
PERRON EIGENVALUE EQUATION NEAR INTERMITTENCY 

We seek for the asymptotical form of the matrix elements Hi, k of the 
Frobenius-Perron operator 9 corresponding to thee family of maps (2) on 
the basis 

( ,(x) = (fl-1) ' ( x ) ( 1 -  2 f ;  l(x)) 2" 

(r+l) 
= 2 - - r x  (l--x) 2"(1-rx) 2" (n = 0, 1, 2,...) (16) 

This form is suggested by the symmetry of the map as well as by the struc- 
ture of the FrobeniusmPerron operator (1). Indeed, for a symmetric fully 
developed chaotic map defined on the interval [ 0, 1 ] the Frobenius-Perron 
operator can be expressed as 

(~q~)(x) = ( f ?  1) ' (x)[q~(�89189189189 (17) 

which implies that any polynomial q~(x) goes over under the application of 
/it into a linear combination of the functions (f71), (x)(1 - 2f71(x))2" which, 
if they are themselves polynomials, constitute a suitable basis. In our con- 
crete example they coincide with those given above (Eq. (16)). One can see 
that this basis goes over for r ~ 1 to that used in the intermittent situation. 

Introducing the functions 

h~(x) = (/~(k)(x) (18) 
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the matrix elements Hj.k are defined by 

o o  

hk(x)-- ~ Hj, k ( j ( x )  (19) 
j -O 

As one has to do here with polynomials, a numerical evaluation of the 
matrix elements for any given indices j, k is not difficult, however, unlike in 
the intermittent situation, a closed analytical expression (a counterpart of 
Eq. (4)) this time does not exist. Nonetheless an asymptotical expression 
can be derived. Our starting point now is Eq. (19), where we insert the 
expressions of the basis functions (16). Introducing the variable z =  
1 - 2f f -X(x)  = ( 1 - x)( 1 - rx) we get 

2 --(4k + I)( 1 + rz)( 1 + z) zk (2 - r + rz) 2k 

oc, 

+ 2-{4k+1)(1 --rz)(1 - - z )  2k ( 2 - - r - - r z )  2k= ~ Hj, kz 2j 
j=O 

(20) 

The exact matrix elements may be calculated by comparing the coefficients 
of the polynomials in both sides. The result is shown in Fig. 3. 

In order to derive an asymptotical analytical approximation, we 
extend the variable z to the whole complex plane and determine the matrix 
elements by Cauchy's formula as 

1 ~ hk(Z) Z - { 2 j + !  ) 
Hj, k --2zci (21) 

where the integration contour encircles the origin and h k(z) stands for the 
left hand side of Eq. (20). For large j and k values the integrals in Eq. (21) 
(each involving one of the terms of hk(z)) may be evaluated by the saddle 
point method. It turns out that for a given j the matrix elements have a 
maximum versus k, namely 

x N/.2 (1-I-r) 3 
/-/s; k ~ 7 (1-!- 2r7s r 2) 

/ / 2/2 / 
(1 + r) 3 k -  1 +---r j 

exp -- 2( 1 + 2r --- r 2) V ~  (22) 

It has been assumed that (k - (2 / (1  + r ) ) j ) / v / - f  is of order unity (i.e., the 
expression (22) is valid near the maximum of the matrix elements in a strip 
of width ~ ~/~). The difference between the expression (22) and the exact 
matrix elements is displayed in Fig. 4. The most important difference 
between the intermittent and nonintermittent situations is that the maximal 
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(26) and the exact matrix elements. 
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matrix elements lie now above the diagonal, and, when increasing the 
index j, their distance from the diagonal increases faster (linearly), than the 
spread of the significant matrix elements around the maximum (square 
root type increase). As a consequence, as we shall see, the eigenvectors a k 
decay for large k exponentially. Therefore, we have to evaluate Eq. (21) 
not along k~(2/ (1  + r))j, as we would expect from Eq. (22), but along 
another line k ~ bj. The quantity b as well as the asymptotics ak ocexp(-0~k) 
of the eigenvector is to be determined from the condition 

y' Hi, k exp( - otk) oc exp( - 0q) (23) 
k 

where the dominant terms of the sum come from the k values near bj. 
Explicitly, we get 

2 
b - (24) 

3 - r  

and 

~  2 - r ) r  (25) 

Evaluating the expression of the matrix element Hi, k by the saddle point 
method around k = bj in a strip of width x/~, we get 

x N/ ( 3 - - r )3  ( 1 - r l n  ( ~ -  1) 1 
H J ' k = ~  2 ( 1 + 2 r - - r  2) exp --2 3 - - r  ~-5 

+ 2 p l n ( ~ - l )  1--  ( 3 - r ) 3 p  2 ) 
x 2 ( l + 2 r - r  2) 

x(1 +(bt, tp+bt,3p3)x+(bz, o+b2,2pZ+b2, apa+bz, 6p6)x 2) (26) 

where 

bl, 1 -- 

hi,3 = 

b2 ,o= 

(r 4 -  12r 3 + 36r 2 -- 28 r - -  9)(3 -- r) 
4( 1 + 2r - r 2) 2 

(r 4 -  16r 2 + 24r + 3)(3 -- r) 4 
12(1 + 2 r -  r2) 3 

r 7 -  33r 6 + 235r s - -687r  4 + 835r 3 -  171r 2 -  243r-- 57 
48( 1 + 2 r -  r2) 3 

(27) 

(28) 

(29) 
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b2,2 = 

b2, 4 --- 

( 3 - r ) :  
32(1 + 2 r -  r2 )  4 

x ( r  8 + 8 r  7 -  2 4 0 r  6 -I- 1496r 5 - -  4 0 1 0 r  4 + 4664r 3 -  1216r 2 -  9 5 2 r -  183) 

(30) 
(4r 7 -  9r 6 -  122r s + 629r 4 -  1040r 3 +459r  2 + 186r + 21 )(3 - r) 5 

24( 1 + 2r - r 2) 5 
(31) 

(3 -- r) 8 (r 4 -  16r 2 + 24r + 3) 2 
b2'6= 288(1 + 2r --- r2) 6 (32) 

and 

1 
x ~ (33) 

2 
k-3_ J 

p = ~ (34) 

Fig. 5 shows the difference between the approximate expression (26) 
and the exact matrix elements. 

Our next task is to solve the eigenvalue equation 

o o  

Z Hj, ksk = 2sj (35) 
k = 0  

We approximate the summation by an integral (considering k to be a con- 
tinuous variable), extend its lower limit to - m ,  insert the asymptotical 
expression (22) for the matrix elements and evaluate the left hand side by 
the saddle point method. In order to make it systematically, we write 

sl, = cp(k) exp( - 0~k) (36) 

and assume that q~(k) grows (or decays) asymptotically at most like a 
power of k. Then we insert the expression (26) of Hi.k, expand q~(k) 
around bj on the 1.h.s. up to fourth order, and perform the integration. The 
result can be written down for arbitrary r~but  for simplicity it will be 
presented for r = 1 - e ,  where e ,~ 1, i.e., near the intermittent situation. As 
the l.h.s, of the equation becomes a function of bj, while at the r.h.s, q~(j) 
stands, the latter should also be expanded around bj. Introducing the new 
independent variable 

~ = 4ebj (37) 



Correlation Spectrum near Intermittency 

0.0001 ' ' '  i i ~ i i ' i I 

617 

5e-05 .- 

0 . . . . . . . . . . . . . . . . . . .  

-5e-05 

-0.000120 . . . . .  301 ,,, 401 '501" 601 .... 701 . . . . . . . . .  801 .. ;0 100 

Fig. 5. Solid line: the difference between the analytical approximation (22) and the exact 
values for the matrix elements Hj.k in the nearly intermittent case r - 0 . 7  along the line 
k = (2 / (3 -  r))j. Dashed line: the same for the difference between the analytical approximation 
(26) and the exact matrix elements. 

and writing 

q~(bj) =~(ff) (38) 

we arrive at the equation 

~ r  ~r + 2(1--2) [1"~2~'"' "~'" ( "~2 ) ] e ~ .  4 -- r  + + --~-- .~+2 r162 =0 

(39) 

For small e the term proportional to e may be neglected in the first 
approximation. The resulting equation, 

2 ( 1 - 2 )  
~7~" - .~ '  + e----~--- ~ = 0 (40) 
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has a solution which diverges for s  oo slower than exponentially 
(actually, as a power) only if 2 (1-2) / (e2)  is a positive integer n. In this 
case 

~ = r = s163 (41) 

and the eigenvector s~. ") (ef. Eqs. (36)-(38)) is expressed as 

sj(") =4ebjL~. (4ebj) exp(-0q) (42) - -1  

where Ll_l(ff) stands for the generalized Laguerre polynomial. ('3) The 
eigenvalue 2 is given (up to first order in e) by 

2 , = l - - ~ n  (43) 

Let us consider the transition to the intermittent case. Eq. (43) implies that 
in that case (i.e., when e ~ 0) the spacing between neighbouring eigenvalues 
vanishes, thus we get a continous spectrum. In order to get the eigen- 
vectors, we fix the value of 2, thus also of en and then take the limit e-~ 0, 
or, equivalently, n-~ oo. We obtain t'2) 

s~ = l im 
t l  ---* t ~  

8 ( 1 - 2 )  bj L ~' )- ' ( 8 (1 -2 )  b J )  ' 

= ~/8(1--A)j  Jl(2 ~/8(1 - - 2 ) j )  (44) 

Provided that 1 - 2  << 1, 
1 - ;t ~ (C2/32), thus we get 

we may write according to Eq. (8) 

C 
(45) 

in accordance with Eq. (11), which gives the dominant contribution near 
the upper edge of the spectrum (cf. the discussion after Eq. (12)). 

When deriving Eqs. (41)-(43) we have made use of the same argument 
as that applied at the solution of the radial Schr6dinger equation with a 
Coulomb potential. It is indeed possible to cast Eq. (40) to the same form. 
To do this, let us introduce the new independent variable 

p=vs  (46) 

and the new function 

(p) Z(P) = r exp -~vv (47) 
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where 

2(1 - 2 )  
v = e----~-- (48) 

Then we get from Eq. (40) 

1 1 m Z t t  
- p Z  - ~"~v2 Z (49) 

This is the well-known form of the radial Schr6dinger equation. Note that 
the actual radial wave function R(p) corresponds to Z/P. The term - l i p  
represents an attracting Coulomb potential and E = - 1 / ( 4 v  2) is the 
Rydberg-formula. As usually, bound states are associated with positive 
integer values for v. We may apply the transformation (46)-(47) also to 
Eq. (39). Before doing that we simplify somewhat the correction term. We 
shall be interested only in the next order correction to the eigenvalue (43), 
thus in the order e term of Eq. (39) we may express all the higher deriva- 
tives in terms of ~' and of ~, as we may assume at the given accuracy that 

satisfies Eq. (40). Thus we get for the n-th eigenvalue and eigenfunction 

I (  4 3n) n ] n(n 1) __~ ~ ~(1 +:~)~' ~"  - ~ '  + v~  + 8 - - = 0 ( 5 o )  

Performing now the transformation (46)-(47), we get 

X " 1 [( 3n 1 nl 1) (;1 ~)X'] 1 
- - - X - e  p2 f" X -  + = -  (51)  p - T - - "  4p 4-n p 4--~v 2X 

Applying first order perturbation theory, we may express the first correc- 
tion of -1/(4v 2) as the diagonal matrix element of the perturbing operator, 
i.e., 

3n 1 n l  1 )  
2 p2 t -4p  ,~n X.(P) 

(52) 

Using Eq. (48) this leads to the expression of the eigenvalue 2 

n (~ 1 ) I ( 2 7e2)] 2=  1 - ~  e -  n - g  n 2 e 2 d- O(e 3) =exp --n + g  + O(e a) (53) 
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Fig. 6. Comparison of the analytical expression (53) with the results of a direct numerical 
measurement for the first three nontrivial eigenvalues near r =  I. Diamonds: 2~, crosses: ~.2, 
squares: 23 (numerically measured data). The dotted and solid lines display the corresponding 
analytical results up to first and second order in e, respectively. 

which is valid in e up to second order, provided that not only e, but also 
en is much smaller than 1. A comparison of these results with those of a 
direct numerical measurement (E) is displayed in Fig. 6. 

As for a comparison in ease of the eigenfunctions, first we have to 
determine them in coordinate space. Eqs. (42) and (16) imply 

S(n)(X) -- E 4e'bjt(n !)- l (4ebj)  e x p ( - a j )  r + 1 
j=O "2' 

- rx )  ( 1 - x )  2j ( 1 - rx) 2j 

1 ( r + l  
 4-7 2 - rx  dy  yL~')__ , ( y )  e -''x) Y ( 5 4 )  

w h e r e  

1 
t c (x )  = ~ [ oc - 2 I n ( (  1 - x ) (  1 - rx)) ] (55) 
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Using Rodrigues' formulg 14) 

1 e x d ~ 
L ~ l ~ ( x ) -  ( x"+le  -x )  (56) 

" n! x d x "  

we may evaluate the integral in (54) to get 

n ( r + l  ) ( x ( x ) - l )  " - t  
s<")(x) = 4-~eb 2 - r x  te(x) ,+r (57) 

As our asymptotical method neglects any effects which appear at j = 0, the 
integral of these functions does not vanish. Therefore, a suitable multiple of 
P(x)  =2r must be still subtracted. The resulting expression, however, 
gives a reasonable fit only quite near to the intermittent case r -  1, so that 
for r < 0.99 one should calculate corrections as well. The essence of the 
problem is not to push perturbation theory to higher order, but to take 
into account the second independent solution of the Eq. (39) and to add 
corrections near the origin, where the asymptotic expansion does not hold 
any lofiger. The procedure is in complete analogy with the intermittent 
situation (of. Appendix A). It may be surprising that the second independent 
solution also plays a role. Indeed, at this point the analogy with the quantum 
mechanical case breaks down. The reason is that the physical meaning of 
the eigenfunctions is different, especially, they are differently related to 
probability distributions. Therefore in the quantum mechanical case a 
singularity in the origin is not allowed, while it is allowed in our case. Note 
that both solutions correspond to the same eigenvalue, i.e., the boundary 
condition at infinity completely determines the spectrum. The calculation of 
the second type of eigenfunctions is simpler after a Laplace transform, 
which brings us back to the original coordinate x. Indeed, 

0(3 

g"'(x) = ~ ~,,(4ebj)e-~Jr 
j--O 

= ( ) = ~ ~,,(4ebj) e -~j r + 1 /=0 2 - rx ( l - x )  2y ( 1 -  rx) v 

( r 2 1  ) 1 f :  -~(x>- (58) .~ ~ -  rx ~ dz ~,(z)  e 

where x ( x )  is given by Eq. (55). Taking the Laplace transform of Eq. (39) 
we get 

- d r  = 0  (59t ~n(0) -'~ (n + 1 -- 2x) ~(x) -- x ( x -  1 ) ate 
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where 

~ ( x )  = dz  ~, , (z)  e -'r (60) 

stands for the Laplace transform of ~.(z). Choosing ~ . (0)=0 in Eq. (59) 
and substituting (55) we arrive at the "regular" eigenfunctions (57) again. 
The "irregular" (logarithmic) eigenfunctions correspond to the choice 
~.(0) ~ 0. Choosing ~.(0) = - 1 we get 

~-(x)= (x-l)" (K-l) "-1 ~ 1 (~.)(~c-1) "-j 
- x.+-------------w-nln(x- 1) x .+l  + j_  j -  1 ~-.~:f (61) 

Taking the inverse Laplace transform we get the second independent solu- 
tion for r  can be given as an infinite sum, but we do not reproduce 
here this cumbersome expression. 

In order to get a reasonable approximation for the eigenfunctions even 
for relatively small r values, we apply the scheme decribed in Appendix A 
(cf. Eqs. (A1)-(A5)). Now the two independent asymptotical solutions 

12 

lO 

| 8 ._~ 

X 

Fig. 7. Comparison of the analytical expression (57) with the results of a direct numerical 
measurement for the first nontrivial eigenfunction s~l)(x) at r--0.95. Solid line: analytical 
approximation, dashed line: numerical result. The eigenfunction is normalized such that the 
integral of its modulus is unity. 
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' i i 0 0.2 0 4 0 6 0.8 1 

Fig. 8. Same for the second eigenfunction s(2)(x). 

" 10 
o ._ 

o t-- 

m 8 

t I ,, 

Fig. 9. Same for the third eigenfunction s(3)(x). 
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h~. l), h~. 2) correspond to the regular and irregular solutions for ~,(z), and the 
exact matrix elements Hj, k valid in the nonintermittent case (cf. Eq. (21)) 
should be used. As a demonstration, in Figs. 7-9 the results for the first 
three eigenfunctions at r = 0.95 are compared with those of the numerical 
measurements. In this case the corrections played already an important 
role, 37 terms had to be included. We also found that it was essential to 
use good approximations for the eigenvalues (cf. Eq. (53)). 

4. CORRELATION FUNCTIONS 

Recalling the definition (1) of the Frobenius-Perron operator/~, one 
may cast a correlation function 

C A. B= dx B(ft'](x)) A(x) P(x) (62) 

(ft ' ](x) standing for the tth iterate of the mapping f ix))  to the form 

C A,B= dx B(x) l~1t(A(x) P(x)) (63) 

Expanding now A(x) P(x) in terms of the eigenfunctions of the Frobenius- 
Perron operator the action of/~'  reduces to a multiplication of each term 
by the t th power of the corresponding eigenvalue. The details of the 
calculation outlined here are presented in Appendix B. There we make use 
of the previously introduced infinite matrix representation (19) and apply 
Eq. (42) for the eigenvectors. This is allowed under the assumption that we 
are close to an intermittent situation (i.e., corrections and the irregular 
Coulomb functions may be neglected) and also that the correlators A(x) 
and B(x) have already zero mean with respect to the natural measure, 
therefore, a substraction of a multiple of P(x) from the eigenfunctions is 
not necessary. Then we apply identities for the generalized Laguerre polyno- 
mials, substitute sums with integrals (which is made possible again by the 
closeness of the intermittent situation), and finally end up with the expression 

fo r(4eb)Z cA'n~ dxP(x) B(x) [4ebz+( l_r ) (a_21n( ( l_x ) ( l_rx ) ) ) ]  2 

• - ~ e x p  - 2 4 e b z + ( 1 - z ) ( a  " 21n((1-x)(1-rx)) )  

x [ a ( 1 -  z ) ( 4 e b - a ) - 2 1 n ( ( 1 - x ) ( 1 - r x ) ) ( 4 e b - a ( 1 - z ) ) ] ) ) )  

(64) 
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Fig. 10. The ratio between the numerically determined correlation function and the analyti- 
cal expression (B24) at three control parameter values. Solid line: r--0.9999, dashed line: 
r=0.99, dotted line: r=0.98. The functions A(x) and B(x) are given by Eq. (69). 

Here 

7 
z = e x p  ( - - ( 2 + ~ e 2 )  t ) (65) 

e =  1 - r  (66) 

~  2 - r ) r  (67) 

2 
b = ~  (68) 

3 - r  

A comparison with the results of a direct numerical measurement of the 
correlation function is displayed in Fig. 10 (cf. Fig. 1. in ref. 3, where the 
same is displayed with a rougher analytical estimate). The functions A(x) 
and B(x) are given by 

A(x) = B(x) = (~ if x < 5 x 1 0  -2 
otherwise (69) 

822/89/3-4-10 
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5. CONCLUSION 

A new analytical method has been developed for the determination of 
spectral properties near and at the intermittent situation of fully developed 
chaotic one-dimensional maps. We made use of an infinite dimensional 
matrix representation, determined the asymptotical expression of the matrix 
elements and reduced the eigenvalue equation to a differential equation, 
which in the lowest order coincides with the radial Schrfdinger equation of 
the hydrogen atom for s-states. This allows for the calculation of correc- 
tions by using the standard quantum mechanical perturbation theory. We 
have demonstrated this by calculating the correction to the eigenvalue. The 
eigenfunctions were also analytically determined and compared with the 
results of numerical measurements. Finally, we derived an analytical 
expression for the correlation functions. It has been shown to fit well the 
numerical data. 

One may think that our study applies only to a very specific example. 
Actually, the method may be applied to any fully developed chaotic one- 
dimensional map which is near to an intermittent situation and which has 
analytic inverse branches. The universal character of our results (within the 
class of mappings mentioned above) has been discussed in ref. 3. We expect 
that the method can be extended to the case of repellers, where one also 
has a complete symbolic dynamics. As a motivation we mention that in 
case of repellers a special interplay of transient chaos and intermittency 
appears, as discussed in the recent papers (~8" 19)which the interested reader 
may consult. 

APPENDIX A: CALCULATING CORRECTIONS IN THE 
INTERMITTENT SITUATION 

The numerical procedure is the following: one assumes that for some 
n the correction term 8gj is negligible when j > n, and then determines both 
the proper asymptotics and 8gj from the requirement that the sum 

(Ogj)2 (A1) 
j = n / 2  + 1 

be minimal (the elements in the second half of the correction vector are 
involved). Explicitely, it gives 

dgj = eos(0c) dj.l)+ sin(0c)~.2) (A2) 
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and the proper asymptotics is given by 

COS(0[) h )I) -~- sin(o[) h) 2) (A3) 

the accurate cigenvector gj being the difference of the above two quantities. 
Here j(i) is the solution of the equation -./ 

o~ h(i)( C2k) _ 2h ~ = Z / r  
j ,  k V k  

k =0 k =0 
(A4) 

These are the first n of the set of the eigenvalue equations. Note that if the 
correction vector 8gj is of length n (as is assumed here), its last n/2 com- 
ponents still enter the next n equations as well. Thus, when these com- 
ponents are small (as required), the error caused by them is small and the 
procedure is consistent. Indeed, for C=0.1  and n =  10 these components 
are less than 10 -5 (of. Table I). The "phase shift" O[ is given by 

n ~ ( I  ) (2) 
2Y'7=, , /2+,  j ~j 

tan(20[) = Y'.j = . /2n  +! (g~ i ) )2 .  --(t~j(2) ) 2 (A5)  

as implied by Eqs. (A1), (A2). Numerically we get, as Table I demon- 
strates, that in case of C ~ 0 the "phase shift" vanishes and ~gj--* -~0 ,  j. 
This result can be understood as follows. For C < < I  and for 
0 < j << (1/C 2) the asymptotical solutions h~'2(z) can be written 
approximately as 

I 

2 
(A6) 

hence the eigenvector gj is of the form 

1 2 
gj = -~ C2j cos O[ -- -z~ sin 0t + 6g~ ( A 7 ) 

As the matrix elements Hj.k are of order unity (compared to C), if 
0c = O(C2), then t~gj will be also of order C ~. For j > ( 1 / C  2) the asymptoti- 
cal solutions are already accurate to order C 2 (provided that C is small 
enough), thus for those values of j 8g) practically vanishes. In view of 
Eq. (A4) this means that the above estimates for O[ and dgj- indeed hold. 
Note that for j = 0  the combination ( I - - 2 ) S g o , ~ ( C 2 / 3 2 ) S g o  enters the 
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Table I. Dependence of the Phase Shift and the Correlation Coefficients 
on the Parameter C 

C 1.0 0.5 0.1 0.05 
2 0.96923323 0.99221794 0 . 9 9 9 6 8 7 5 5  0.99992188 
a -0.26334376 -0.04975108 -0.00103697 -0.00024860 

ggo -0.55711388 --0.85478945 -0.99357489 --0.99831575 
ggi 0 . 0 9 1 3 1 2 8 2  0 . 0 1 1 9 6 5 1 5  0 . 0 0 0 0 0 5 6 0  -0.00000357 
~g2 0 . 0 5 7 3 5 7 9 3  0.00736996 --0.00001951 -0.00000816 
~g3 0 . 0 3 7 0 4 1 1 5  0 . 0 0 5 5 3 2 5 5  0 . 0 0 0 0 3 2 8 3  0.00000624 
~g4 0 . 0 1 7 5 7 7 7 5  0.00255459 --0.00000197 --0.00000159 
~g5 0 . 0 0 6 7 9 4 8 0  0 . 0 0 1 1 1 0 8 1  0 . 0 0 0 0 0 3 1 8  0.00000036 
gg6 --0.00025431 --0.00000901 --0.00000048 --0.00000012 
~g7 --0.00374950 --0.00063731 --0.00000183 --0.00000020 
~gs -0.00472257 -0.00087973 --0.00000216 --0.00000018 
Jg9 -0.00406673 -0.00084036 --0.00000206 -0.00000016 

eigenvalue equation, hence (unlike when j > 0) ggo = O( 1 ). Another impor- 
tant observation refers to the boundary conditions to Eq. (10): as we have 
seen, for C << 1 we get h(z) oc z (cf. Eqs. ( 11 ) and (A3)), just like in the case 
of the quantum mechanical scattering on a pure Coulomb potential. 

APPENDIX B: DERIVATION OF AN ANALYTIC EXPRESSION 
FOR THE CORRELATION FUNCTIONS 

Introducing 

and 

c~.B= dx B(x) B'(A(x) P(x)) 

= fo dx B(x) fit a ( j )  ( j ( x )  
J 

1 ~ 

Yodx B(x) 2 a(j) ~ ( t = H )k. J ~t,(x) 
j = O  k =0  

] = ~ dx B(x) ~(x) (n')~. j a(j) 
j,k 

fl(2) = dx B(x) ~2/(4cb)(X) 

1 
Gt('~' Y) ='~sb ( Ht)(~/(4eb))" (:/(4eb)) 

(B1) 

(B2) 

(B3) 

(B4) 
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we may write Eq. (B1) as 

C ] ' S ~ ~e b d.~ d~ fl ( 2 ) G,(~, )7) a ~eb 

Making use of the eigenfunctions Eq. (42) we may write 

f :  d~ G,(~, .~) s (tJ ~t,,~,, 371(4~:b)-- E ( S t ) k ,  JS~ "1) - -  A l~ 4eb ) 
J 

Let us represent a()7/(4eb)) (cf. Eq. (B5)) as 

a 5' = E c,s's~14~.h,= E c,pL)_,(p)exp -4-~ y 
i--1 I=1 

where 

c,= 7 df, a ~eb exp 4-~p exp(--)~)L~_l()~ ) 

Then we may write 

dy G,( s y) a ~ b  

I--I 

x exp - 1 - 4 - ~  - '  ,()7) exp -4ffb~b 5 

~ l f :  ( ) 7 )  ==E, 7 d:~'a 

_ _ 2 txL t_  - xexp 1 ~ y' L~_,( ) ,(s ~ 

= f :  d.~ exp ( - (1 - 4~b) .~) s exp ( -~-b~b -~ ) 

x E LJ_ l(.~) 7 L~_ l(Y) 2,a 4-~ 
/=l  

629 

(BS) 

(B6) 

(B7) 

(B8) 

(B9) 
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that implies 

G,(2, fi) = 2 exp -~eb  2 -  1 - .P ~. L~_ 1(2) 7 L)_ ,(.17) 2 t 
l = l  

(B10) 

Here 2~ is of the form exp( -y l )  (cf. Eq. (53)) where y=  �89 + 7/~2 Inserting 
this and applying the identity ('5) 

1L~ ,(37)=1 
7 - ( L ~  

(Bl l )  

we obtain 

G,(2, ~)=~exp - ~ e b 2 -  1 - 4 - ~  )7 = L)_,(2)(L~176 T 1 

(B12) 

where z stands for e x p ( -  yt). Let us insert the contour integral representa- 
tion ('6) 

exp()7)~ dzeXp(-z)(  z )' 
L~ 2hi c z -  )7 z ' (B13) 

where the contour C encircles the point z = )7. We get 

2r ( ~ ) :  exp ( -z )  ~ (ZZ.p) t-I 
Gt(2, 37) = -~ -~  exp -~eb ( 2 -  "~) c dz (z_-~i ~ ~ L~_ ,(2) Z-- 

l = l  

(B14) 

Using the generating function of the Laguerre polynomials, (t7) i.e., the 
identity 

L~_ ,(2) u '-~ -- 1 2u (B15) 
t=l - ( l - - u )  2exp u -  1 

that holds true for 

l u l < l  (B16) 

we get finally 

G,(~, y)= x r exp 
2hi --~eb ( 2 -  ~ ) , dw 

.. 2zw ) 
exp - Y W - w ( l ~ - ~ _ l  

(w(1 - v) - 1)2 

(B17) 
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Here the new complex variable w = z/~ has been introduced. The contour 
C' encircles accordingly the points w = 1 and w = 1 / ( 1 -  ~), the latter com- 
ing from the condition (B16). Inserting Eqs. (B17), (B3), (16) into Eq. (B5) 
the integration over s may be performed to get 

~ 2ebr dx P(x) B(x) 

x [ w[4eb~ + (1 - 1:)(~- 2 In((1 - x ) ( 1  -rx)))] - ( ~ -  2 ln((1 - x)(1 - rx))) ] -2 

= -8e2b2~ f] dx P(x) B(x) 

x~ '  ( . ~ ( 1 -  r ) ( 4 e b - e ) - 2  l n ( ( 1 - x ) ( 1 - r x ) ) ( 4 e b - o ~ ( 1 - r ) ) )  

4eb~ + ( 1 - 1:)(~ - 2 In( ( 1 - x)( 1 - rx) ) ) 

x [4ebr + (1 - l:)(e - 2 In((1 - x)(1 - rx)))]  -z (B18) 

Here we have also used the fact that in our case P(x)=2(fi-~)'(x). 
Furthermore,  

~t(p ) - dy exp( - yp) y-----~) (B 19 ) 
a( 

Y 

Consider now the expression 

- ~ ' ( p )  = dyexp(-yp)a(y)  

oo 

~ a(j)exp(-pj)  
j = O  

Comparing this with the expansion (cf. (B1)) 

we get 

A(x) P ( x ) =  ~ a(j) (j(x)= ~ a(j) �89 f-'(x)) 2J 
j = 0  j---O 

(B20) 

(B21) 

(B22) 

(B23) 
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Inserting this into Eq. (B 18) we get the final expression for the correlation 
function: 

f/ r(4eb)2 
CAt'a~ dxP(x) B(x) [4ebr+(l_r)(o~_21n((l_x)(l_rx)))]2 

(f(~ 1 ( 1 1 
xA -~exp -24ebr+(1-r)(oc-21n((1-x)(1-rx))) 

x[a(1-r)(4eb-o~)-21n((1-x)(1-rx))(4eb-~(1-r))]))) 

(B24) 
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